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Abstract

In this lab task, we sought to use critical illumination and Kohler
illumination techniques to view the image of a 1000 lines-per-inch
metal foil grid and compare the resulting image qualities. We also used
an optical lens setup as a means of constructing the spatial Fourier
transform of the sample on the focal plane of a convex lens. Various
components were allowed to be inverse-transformed, therefore allowing
one to explore the spatial structure of the sample in a two-dimensional
frequency space.
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Theoretical Background

Geometric Optics In the thin-lens approximation, an ideal lens will take
parallel light rays and refract them towards a single point, called the focal
point. We can characterize convex lenses by the distance between the lens
and its focal point, which we call the focal length f, as pictured in Figure
??7 (left). The locus of points one focal length away from a lens is called
the focal plane. Due to the symmetry of the lens, light that passes straight
through the middle of the lens must be left unrefracted, so the intersection of
a light ray passing form an object at a distance greater than one focal length
away from the lens and a parallel ray refracted by the lens (and therefore
passing through the focal point) exactly define the location of the object’s
real image, as pictured in Figure 7?7 (right). If we call the horizontal dis-
tance between the object and the lens o and the horizontal distance between
the lens and real image 7, a simple comparison of similar triangles gives us
what is called the thin lens equation, which relates o and ¢ to the focal
length for such idealized lenses.
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By inspection, we can also see that the relative size of the real image to
the object is given by its magnification M, which is defined as follows.
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Spherical Aberration The most cost-effective manner in which to con-
struct a lens is by using spherical sections of material, as suggested by the
2D schematic in figure ?7. Unfortunately, it turns out that such lenses do
not perfectly focus light according to the idealization required to generate
the thin lens equation. It turns out that instead of refracting parallel rays to
a single focal point, spherical lenses refract parallel rays to numerous focal
points. The further away an incident light ray is from the center of the lens,
the further away from the idealized focal point the refracted ray is oriented.
This particular deviation from idealization is called spherical aberration
(aberrations in general refer to refractory deviations from lens idealization)
and is represented by the diagram in Figure ?77.
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Figure 1: Diagram displaying the ideal thin lens’ manner of refracting parallel

light rays towards a single point (left) and point sources to single points
(right)
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Figure 2: Shematic diagram of various ways a convex lens can be formed out
of spherical sections.
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Figure 3: Diagram depicting the refractory deviations present in cases of
spherical aberration.

One of the most common ways to troubleshoot the effects of spherical
aberration are to use a variable-diameter aperture to block out marginal
rays so that the remaining light rays form more approximately a single point
in the focal plane. This technique is schematically depicted in Figure ?7?.

In this experiment, we had three primary goals:

1. Use critical illumination to view the image of a sample.

2. Use Kohler illumination to view the image of a sample and compare to
critical illumination.

3. Use principles of Fourier optics to physically generate a spatial Fourier
transform of a sample.
Experimental Setup

During this lab task, we constructed three main types of setups to create
various images of a sample: critical illumination, Kohler illumination, and
Fourier optics. The sample we used was a 1000 lines-per-inch metal foil grid.
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Figure 4: Shematic representation of how to reduce the effects of spheri-
cal aberration using a variable-diameter aperture. The dotted black lines
represent light rays that are

Critical Illumination Critical illumination is a technique wherein light
from a light source is directly focused into a microscope objective, with the
sample placed extremely close to the microscope objective. Therefore, only
the light that passes through the holes in the sample will be recorded by the
camera. The following components were aligned and laid out in a line in the
following order in order to achieve critical illumination.

1.
2.
3.

6.
7.

LED light source
O.D.1 light filter
Variable-diameter aperture, to reduce effects of spherical aberration

DCX25 (25 mm focal length convex lens), positioned as to focus LED
light into microscope objective

. Metal foil grid sample

Microscope objective

Camera, positioned to capture light from objective

'Reduces source light amplitude to prevent camera sensor saturation.



Kohler Illumination Kohler illumination is a technique wherein light
from a source is greatly unfocused while still allowing the image of the sample
to remain in focus for the camera. The general goals of employing Kohler il-
lumation was to eliminate the image of the light source from the sample plane
and to limit stray light that could cause lens flare or interact with structural
components of the microscope. The latter effect is achieved through the use
of two apertures, called the field diaphragm and aperture diaphragm which
limit light illuminating non-imaged portions of the sample and limit light il-
luminating the sample from extreme angles. The following components were
aligned and laid out in a line in the following order in order to achieve Kohler
illumination.

1. LED light source

2. DCX25 (25 mm focal length convex lens), positioned as to focus LED
light into second aperture, called the “collector lens”

3. Variable-diameter aperture, called the “field diaphragm,” positioned
in the plane that will be focused onto the sample through the second
condensor lens

4. Variable-diameter aperture, called the “aperture diaphragm,” posi-
tioned in the focal plane of the LED through the collector lens

5. DCX25 (25 mm focal length convex lens), positioned as to focus the
field diaphragm plane onto the sample.

6. Metal foil grid sample
7. Microscope objective

8. Camera, positioned to capture light from objective

Figure 7?7 demonstrates a Kohler illumination setup without the field di-
aphragm or the aperture diaphragm put in place. Here, red rays indicate
stray light from the LED and green rays indicate LED rays angled appro-
priately on the sample. The pink vertical line represents the sample and the
grey bars indicate the section of the sample that is viewed by the camera.
First, putting in the aperture diaphragm, as shown in Figure 77, blocks out
the stray light rays (red). Second, putting in the field diaphragm, as shown in
Figure 77, blocks out the appropriately angled light that does not illuminate
the target portion of the sample.



Completely defocusing the light source

Figure 5: Schematic representation of the Kohler illumination setup.
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Figure 6: Insertion of an aperture diaphragm.
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Figure 7: Insertion of a field diapraghm.

Fourier Optics It is of significant coincidence that the diffraction nature
of light corresponds exactly to a spatial Fourier transform with an angular
parameter. A convex lens is then able to focus the resulting light to generate
a 2D representation of the Fourier transform in the lens’ focal plane.
Consider in two dimensions an arbitrary sample. We can describe the
sample entirely in terms of a complex-valued “transparency” function 7'(y)
which is defined such that if the electric field incident on the sample is E(y, t),
the electric field that exits the sample on the other side is T'(y)E(y,t). In
the simple case of an opaque metal foil grid, the T'(y) function will equal 1
at all of the “holes” and 0 elsewhere. Consider a plane wave E(y,t) = Epe™!
incident on the sample. The electric field that exits the sample on the other
side is then
E'(y,t) = EoT(y)e™". (3)

Consider an point P whose straightline connection to the sample creates an
angle # with the incident plane wave, as shown in Figure ??7. Each point on
the sample plane can be treated as a point source by the Huygens-Fresnel
principle. Therefore, we can calculate the electric field at P by integrating
across the entire sample, treating each point as a point source, and accounting
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Figure 8: Light diffracted through an arbitrary sample oriented towards an
arbitrary point P.

for the appropriate phase shifts as given by the far-field approximation (which
no longer ends up as an approximation when P is set at infinity). The far field
approximation takes a geometric approach to calculating the phase shifts,
stating that relative to a point (), which we will put on the sample at y = 0,
the phase shift of light emitted from a Huygens-Fresnel point at a position y
will have a phase shift of £ sin . This is exactly the amount of time taken for
light to traverse the red paths connecting the blue dotted line to the sample
in Figure ??. Therefore, the electric field at point P becomes

E(P) :/V E <y,t+ %sm) dy (4)
Y
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which is proportional to the Fourier transform of the sample’s complex trans-
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Figure 9: Every plane wave is focused by a convex lens onto the lens’ focal
plane located at one focal length f away from the lens at a unique point y(6)
determined by the plane wave’s angle of incidence 6.

parency T'(y) with frequency parameter & sin 6, written as F,[T(y)|(ksin@).
Therefore, the intensity of the resulting light (i.e., the brightness of the re-
sulting light) will be proportional to the square of the modulus of this Fourier
transform, | F,[T(y)](k sin 6))?.

Finally, using the principles of geometric optics, we can see that convex
lenses will map a plane wave at a particular angle to exactly a unique point
on its focal plane. Therefore, each component of the Fourier transform of the
sample is assigned a point in the focal plane, meaning that the intensities
of the light present in the focal plane give an exact representation of the
square of the modulus Fourier transform of the sample. This focusing can
be visualized with the aid of Figure ?7.

Experimental Findings

For each of these experiments, we looked at the image of a 1000 lines-per-inch
metal foil grid.

Critical Illumination of Sample Overall, the image produced by critical
illumination (as described in the Experimental Setup section) ended up less
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Figure 10: Image of sample under critical illumination.

than ideal. A general shot is displayed in Figure 7?7, where it is clear that
the illumination is not uniform, due to the non-uniformity of the LED light
source. This is a side-effect of the plane of the LED light source being almost
in focus to the camera, effectively allowing the LED light source to itself form
a defocused image to the camera.

We used the a variable-diameter aperture placed between the LED and
the convex lens to reduce the effects of spherical aberration. However, when
this aperture was closed, we found that the sharpness of the image was de-
creased, the contrast of the image was decreased, and diffraction fringe effects
became more pronounced. It is because of these effects that utilizing Kohler
illumination becomes advantageous. Images of the sample under critical il-
lumination for various aperture sizes is displayed in Figure ?? where these
effects can be seen.

Kohler Illumination of Sample Kohler illumination proved to be much
more practical and useful in terms of accurately viewing the sample. The
configuration of optical components was set up as described in the Experi-
mental Setup in order to generate a clear image of the sample that reduced
stray light and forced the source light to be completely out of focus.

Fourier Decomposition of Sample Using a laser light source, we were
able to diffract light through the sample as described in the Experimental
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Figure 11: Image of sample under critical illumination for various aperture
sizes intended to counter the effects of spherical aberration. The red arrow
indicates a decresaing aperture size.

Setup section for Fourier Optics. The focal plane of the convex lens we placed
directly after the sample generated the image visible in figure 77 on its focal
plane, which was viewed by inserting a piece of paper along this plane. This
pattern represents the square of the modulus of the spatial Fourier transform
of our sample.

We compared this observed Fourier transform to one computed in Mathe-
matica as well as closed an aperture in the Fourier plane to only allow certain
components through and placed another convex lens one focal length away
to generate an inverse transform that was then viewed through the camera.
We used Mathematica to also generate analogous inverse transform images.
All of these results are summarized in Figure 77. Note that the middle “dot”
corresponds purely to background noise and contains no information about
the repetitive structure of the original sample.

We also decided to let through only specific Fourier components to ex-
plore the resulting inverse transforms. Points in the Fourier plane that are
opposing to each-other with respect to the origin correspond to complex con-
jugate pairs, so their superposition generates a real-valued waveform that is
then visible on the inverse transform plane as sine and cosine waves. These
components, when displayed without their conjugate pairs, provide a feature-
less inverse transform, similar to what is seen in the inverse transform plane
when only the center “dot” is allowed through. This is because functions of
the form e and e~"*¥ have constant modulus with respect to the param-
eter y, but their superposition e + e~*¥ = 2cos(ky) has a non-constant
modulus.
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Figure 12: Physially generating a Fourier transform of our metal foil grid
sample.
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Figure 13: Resulting inverse transforms and Mathematica simluations for
various aperture sizes in the Fourier plane.

13



Figure 14: Allowing only particular components to shine through revealed
interesting patterns. Note: opposing dots correspond to conjugate pairs.

Conclusion

Real-World Relevance Microscopes are devices that are used widely in
the sciences and use a combination of lenses and various lighting methods to
generate images of samples in the same way that we have here. Construct-
ing images using optical components gives me a huge appreciation for the
amount of work and research that has gone into creating reliable and useful
lighting techniques, as well as the amount of effort necessary to fine-tune the
positioning and constructions of microscope setups.

Diffraction and interference are very fundamental principles in studying
the wave-nature of light and quantum mechanics. The results of Fourier
Optics, such as the aspects that we have explored here in this lab task, are
very profound and serve as an incredible example of the manner in which light
can interact with itself and produce very detailed patterns corresponding to
highly intricate mathematical correspondences.

Advice to Future Lab Students Various pieces of advice for future stu-
dents pursuing this experiment:

e Be very careful in the initial alignment of the optical components. Mis-
alignment will not allow intended light to be directed into the camera.

e Do not get too intricate with calculations with where along the track to

14



put the optical components exactly. Frequently it turns out that man-
ual adjustments are necessary in the end anyway, so a rough estimate
is frequently all that is necessary to get one on the right track towards
generating a clear image.

e This is a highly recommended lab because the part dealing with Fourier
Optics is way cool!

Suggestions for Improvement Various suggestions for improvement of
this lab experiment:

e The lab felt more like a “task” as opposed to an “experiment” in that
the driving motivation was to create something as opposed to solve a
problem, so while it was physics-based, it didn’t feel very scientific. For
instance, there were no hypotheses to be generated.
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